
How Artificial Intelligence Is 

Changing Science 

The latest AI algorithms are probing the 

evolution of galaxies, calculating quantum wave 

functions, discovering new chemical compounds 

and more. Is there anything that scientists do 

that can’t be automated? 
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Dan Falk, 11 March 2019, Quanta Magazine 
https://www.quantamagazine.org/how-artificial-

intelligence-is-changing-science-20190311 

 

 

No human, or team of humans, could possibly 

keep up with the avalanche of information 

produced by many of today’s physics and 

astronomy experiments. Some of them record 

terabytes of data every day — and the torrent is 

only increasing. The Square Kilometer Array, a 

radio telescope slated to switch on in the mid-

2020s, will generate about as much data traffic 

each year as the entire internet. 

The deluge has many scientists turning to 

artificial intelligence for help. With minimal 

human input, AI systems such as artificial neural 

networks — computer-simulated networks of 

neurons that mimic the function of brains — can 

plow through mountains of data, highlighting 

anomalies and detecting patterns that humans 

could never have spotted. 

Of course, the use of computers to aid in 

scientific research goes back about 75 years, and 

the method of manually poring over data in 

search of meaningful patterns originated 

millennia earlier. But some scientists are arguing 

that the latest techniques in machine learning 

and AI represent a fundamentally new way of 

doing science. One such approach, known as 

generative modeling, can help identify the most 

plausible theory among competing explanations 

for observational data, based solely on the data, 

and, importantly, without any preprogrammed 

knowledge of what physical processes might be 

at work in the system under study. Proponents of 

generative modeling see it as novel enough to be 

considered a potential “third way” of learning 

about the universe. 

Traditionally, we’ve learned about nature 

through observation. Think of Johannes Kepler 

poring over Tycho Brahe’s tables of planetary 

positions and trying to discern the underlying 

pattern. (He eventually deduced that planets 

move in elliptical orbits.) Science has also 

advanced through simulation. An astronomer 

might model the movement of the Milky Way 

and its neighboring galaxy, Andromeda, and 

predict that they’ll collide in a few billion years. 

Both observation and simulation help scientists 

generate hypotheses that can then be tested with 

further observations. Generative modeling 

differs from both of these approaches. 

“It’s basically a third approach, between 

observation and simulation,” says Kevin 

Schawinski, an astrophysicist and one of 

generative modeling’s most enthusiastic 

proponents, who worked until recently at the 

Swiss Federal Institute of Technology in Zurich 

(ETH Zurich). “It’s a different way to attack a 

problem.” 

Some scientists see generative modeling and 

other new techniques simply as power tools for 

doing traditional science. But most agree that AI 

is having an enormous impact, and that its role 

in science will only grow. Brian Nord, an 

astrophysicist at Fermi National Accelerator 

Laboratory who uses artificial neural networks 

to study the cosmos, is among those who fear 

there’s nothing a human scientist does that will 

be impossible to automate. “It’s a bit of a 

chilling thought,” he said. 



Discovery by Generation 

Ever since graduate school, Schawinski has been 

making a name for himself in data-driven 

science. While working on his doctorate, he 

faced the task of classifying thousands of 

galaxies based on their appearance. Because no 

readily available software existed for the job, he 

decided to crowdsource it — and so the Galaxy 

Zoo citizen science project was born. Beginning 

in 2007, ordinary computer users helped 

astronomers by logging their best guesses as to 

which galaxy belonged in which category, with 

majority rule typically leading to correct 

classifications. The project was a success, but, as 

Schawinski notes, AI has made it obsolete: 

“Today, a talented scientist with a background in 

machine learning and access to cloud computing 

could do the whole thing in an afternoon.” 

Schawinski turned to the powerful new tool of 

generative modeling in 2016. Essentially, 

generative modeling asks how likely it is, given 

condition X, that you’ll observe outcome Y. The 

approach has proved incredibly potent and 

versatile. As an example, suppose you feed a 

generative model a set of images of human 

faces, with each face labeled with the person’s 

age. As the computer program combs through 

these “training data,” it begins to draw a 

connection between older faces and an increased 

likelihood of wrinkles. Eventually it can “age” 

any face that it’s given — that is, it can predict 

what physical changes a given face of any age is 

likely to undergo. 

 

 

None of these faces is real. The faces in the top 

row (A) and left-hand column (B) were 

constructed by a generative adversarial network 

(GAN) using building-block elements of real 

faces. The GAN then combined basic features of 

the faces in A, including their gender, age and 

face shape, with finer features of faces in B, 

such as hair color and eye color, to create all the 

faces in the rest of the grid. 

Adapted from NVIDIA 

 

The best-known generative modeling systems 

are “generative adversarial networks” (GANs). 

After adequate exposure to training data, a GAN 

can repair images that have damaged or missing 

pixels, or they can make blurry photographs 

sharp. They learn to infer the missing 

information by means of a competition (hence 

the term “adversarial”): One part of the network, 

known as the generator, generates fake data, 

while a second part, the discriminator, tries to 

distinguish fake data from real data. As the 

program runs, both halves get progressively 

better. You may have seen some of the hyper-

realistic, GAN-produced “faces” that have 

circulated recently — images of “freakishly 

realistic people who don’t actually exist,” as one 

headline put it. 

 

 



More broadly, generative modeling takes sets of 

data (typically images, but not always) and 

breaks each of them down into a set of basic, 

abstract building blocks — scientists refer to this 

as the data’s “latent space.” The algorithm 

manipulates elements of the latent space to see 

how this affects the original data, and this helps 

uncover physical processes that are at work in 

the system. 

The idea of a latent space is abstract and hard to 

visualize, but as a rough analogy, think of what 

your brain might be doing when you try to 

determine the gender of a human face. Perhaps 

you notice hairstyle, nose shape, and so on, as 

well as patterns you can’t easily put into words. 

The computer program is similarly looking for 

salient features among data: Though it has no 

idea what a mustache is or what gender is, if it’s 

been trained on data sets in which some images 

are tagged “man” or “woman,” and in which 

some have a “mustache” tag, it will quickly 

deduce a connection. 

In a paper published in December in Astronomy 

& Astrophysics, Schawinski and his ETH Zurich 

colleagues Dennis Turp and Ce Zhang used 

generative modeling to investigate the physical 

changes that galaxies undergo as they evolve. 

(The software they used treats the latent space 

somewhat differently from the way a generative 

adversarial network treats it, so it is not 

technically a GAN, though similar.) Their model 

created artificial data sets as a way of testing 

hypotheses about physical processes. They 

asked, for instance, how the “quenching” of star 

formation — a sharp reduction in formation 

rates — is related to the increasing density of a 

galaxy’s environment. 

For Schawinski, the key question is how much 

information about stellar and galactic processes 

could be teased out of the data alone. “Let’s 

erase everything we know about astrophysics,” 

he said. “To what degree could we rediscover 

that knowledge, just using the data itself?” 

First, the galaxy images were reduced to their 

latent space; then, Schawinski could tweak one 

element of that space in a way that corresponded 

to a particular change in the galaxy’s 

environment — the density of its surroundings, 

for example. Then he could re-generate the 

galaxy and see what differences turned up. “So 

now I have a hypothesis-generation machine,” 

he explained. “I can take a whole bunch of 

galaxies that are originally in a low-density 

environment and make them look like they’re in 

a high-density environment, by this 

process.”  Schawinski, Turp and Zhang saw that, 

as galaxies go from low- to high-density 

environments, they become redder in color, and 

their stars become more centrally concentrated. 

This matches existing observations about 

galaxies, Schawinski said. The question is why 

this is so. 

The next step, Schawinski says, has not yet been 

automated: “I have to come in as a human, and 

say, ‘OK, what kind of physics could explain 

this effect?’” For the process in question, there 

are two plausible explanations: Perhaps galaxies 

become redder in high-density environments 

because they contain more dust, or perhaps they 

become redder because of a decline in star 

formation (in other words, their stars tend to be 

older). With a generative model, both ideas can 

be put to the test: Elements in the latent space 

related to dustiness and star formation rates are 

changed to see how this affects galaxies’ color. 

“And the answer is clear,” Schawinski said. 

Redder galaxies are “where the star formation 

had dropped, not the ones where the dust 

changed. So we should favor that explanation.” 



 

 

Using generative modeling, astrophysicists 

could investigate how galaxies change when 

they go from low-density regions of the cosmos 

to high-density regions, and what physical 

processes are responsible for these changes. 

Adapted from K. Schawinski et al.; Source doi: 

10.1051/0004-6361/201833800 

 

The approach is related to traditional simulation, 

but with critical differences. A simulation is 

“essentially assumption-driven,” Schawinski 

said. “The approach is to say, ‘I think I know 

what the underlying physical laws are that give 

rise to everything that I see in the system.’ So I 

have a recipe for star formation, I have a recipe 

for how dark matter behaves, and so on. I put all 

of my hypotheses in there, and I let the 

simulation run. And then I ask: Does that look 

like reality?” What he’s done with generative 

modeling, he said, is “in some sense, exactly the 

opposite of a simulation. We don’t know 

anything; we don’t want to assume anything. We 

want the data itself to tell us what might be 

going on.” 

 

The apparent success of generative modeling in 

a study like this obviously doesn’t mean that 

astronomers and graduate students have been 

made redundant — but it appears to represent a 

shift in the degree to which learning about 

astrophysical objects and processes can be 

achieved by an artificial system that has little 

more at its electronic fingertips than a vast pool 

of data. “It’s not fully automated science — but 

it demonstrates that we’re capable of at least in 

part building the tools that make the process of 

science automatic,” Schawinski said. 

Generative modeling is clearly powerful, but 

whether it truly represents a new approach to 

science is open to debate. For David Hogg, a 

cosmologist at New York University and the 

Flatiron Institute (which, like Quanta, is funded 

by the Simons Foundation), the technique is 

impressive but ultimately just a very 

sophisticated way of extracting patterns from 

data — which is what astronomers have been 

doing for centuries. In other words, it’s an 

advanced form of observation plus analysis. 

Hogg’s own work, like Schawinski’s, leans 

heavily on AI; he’s been using neural networks 

to classify stars according to their spectra and to 

infer other physical attributes of stars using data-

driven models. But he sees his work, as well as 

Schawinski’s, as tried-and-true science. “I don’t 

think it’s a third way,” he said recently. “I just 

think we as a community are becoming far more 

sophisticated about how we use the data. In 

particular, we are getting much better at 

comparing data to data. But in my view, my 

work is still squarely in the observational mode.” 

Hardworking Assistants 

Whether they’re conceptually novel or not, it’s 

clear that AI and neural networks have come to 

play a critical role in contemporary astronomy 

and physics research. At the Heidelberg Institute 

for Theoretical Studies, the physicist Kai 

Polsterer heads the astroinformatics group — a 

team of researchers focused on new, data-

centered methods of doing astrophysics. 

Recently, they’ve been using a machine-learning 

algorithm to extract redshift information from 

galaxy data sets, a previously arduous task. 



Polsterer sees these new AI-based systems as 

“hardworking assistants” that can comb through 

data for hours on end without getting bored or 

complaining about the working conditions. 

These systems can do all the tedious grunt work, 

he said, leaving you “to do the cool, interesting 

science on your own.” 

But they’re not perfect. In particular, Polsterer 

cautions, the algorithms can only do what 

they’ve been trained to do. The system is 

“agnostic” regarding the input. Give it a galaxy, 

and the software can estimate its redshift and its 

age — but feed that same system a selfie, or a 

picture of a rotting fish, and it will output a (very 

wrong) age for that, too. In the end, oversight by 

a human scientist remains essential, he said. “It 

comes back to you, the researcher. You’re the 

one in charge of doing the interpretation.” 

For his part, Nord, at Fermilab, cautions that it’s 

crucial that neural networks deliver not only 

results, but also error bars to go along with them, 

as every undergraduate is trained to do. In 

science, if you make a measurement and don’t 

report an estimate of the associated error, no one 

will take the results seriously, he said. 

Like many AI researchers, Nord is also 

concerned about the impenetrability of results 

produced by neural networks; often, a system 

delivers an answer without offering a clear 

picture of how that result was obtained. 

Yet not everyone feels that a lack of 

transparency is necessarily a problem. Lenka 

Zdeborová, a researcher at the Institute of 

Theoretical Physics at CEA Saclay in France, 

points out that human intuitions are often 

equally impenetrable. You look at a photograph 

and instantly recognize a cat — “but you don’t 

know how you know,” she said. “Your own 

brain is in some sense a black box.” 

It’s not only astrophysicists and cosmologists 

who are migrating toward AI-fueled, data-driven 

science. Quantum physicists like Roger Melko 

of the Perimeter Institute for Theoretical Physics 

and the University of Waterloo in Ontario have 

used neural networks to solve some of the 

toughest and most important problems in that 

field, such as how to represent the mathematical 

“wave function” describing a many-particle 

system. AI is essential because of what Melko 

calls “the exponential curse of dimensionality.” 

That is, the possibilities for the form of a wave 

function grow exponentially with the number of 

particles in the system it describes. The 

difficulty is similar to trying to work out the best 

move in a game like chess or Go: You try to 

peer ahead to the next move, imagining what 

your opponent will play, and then choose the 

best response, but with each move, the number 

of possibilities proliferates. 

Of course, AI systems have mastered both of 

these games — chess, decades ago, and Go in 

2016, when an AI system called AlphaGo 

defeated a top human player. They are similarly 

suited to problems in quantum physics, Melko 

says. 

The Mind of the Machine 

Whether Schawinski is right in claiming that 

he’s found a “third way” of doing science, or 

whether, as Hogg says, it’s merely traditional 

observation and data analysis “on steroids,” it’s 

clear AI is changing the flavor of scientific 

discovery, and it’s certainly accelerating it. How 

far will the AI revolution go in science? 

Occasionally, grand claims are made regarding 

the achievements of a “robo-scientist.” A decade 

ago, an AI robot chemist named Adam 

investigated the genome of baker’s yeast and 

worked out which genes are responsible for 

making certain amino acids. (Adam did this by 

observing strains of yeast that had certain genes 

missing, and comparing the results to the 

behavior of strains that had the genes.)  Wired’s 

headline read, “Robot Makes Scientific 

Discovery All by Itself.” 

More recently, Lee Cronin, a chemist at the 

University of Glasgow, has been using a robot to 

randomly mix chemicals, to see what sorts of 

new compounds are formed. Monitoring the 

reactions in real-time with a mass spectrometer, 

a nuclear magnetic resonance machine, and an 



infrared spectrometer, the system eventually 

learned to predict which combinations would be 

the most reactive. Even if it doesn’t lead to 

further discoveries, Cronin has said, the robotic 

system could allow chemists to speed up their 

research by about 90 percent. 

Last year, another team of scientists at ETH 

Zurich used neural networks to deduce physical 

laws from sets of data. Their system, a sort of 

robo-Kepler, rediscovered the heliocentric 

model of the solar system from records of the 

position of the sun and Mars in the sky, as seen 

from Earth, and figured out the law of 

conservation of momentum by observing 

colliding balls. Since physical laws can often be 

expressed in more than one way, the researchers 

wonder if the system might offer new ways — 

perhaps simpler ways — of thinking about 

known laws. 

These are all examples of AI kick-starting the 

process of scientific discovery, though in every 

case, we can debate just how revolutionary the 

new approach is. Perhaps most controversial is 

the question of how much information can be 

gleaned from data alone — a pressing question 

in the age of stupendously large (and growing) 

piles of it. In The Book of Why (2018), the 

computer scientist Judea Pearl and the science 

writer Dana Mackenzie assert that data are 

“profoundly dumb.” Questions about causality 

“can never be answered from data alone,” they 

write. “Anytime you see a paper or a study that 

analyzes the data in a model-free way, you can 

be certain that the output of the study will 

merely summarize, and perhaps transform, but 

not interpret the data.” Schawinski sympathizes 

with Pearl’s position, but he described the idea 

of working with “data alone” as “a bit of a straw 

man.” He’s never claimed to deduce cause and 

effect that way, he said. “I’m merely saying we 

can do more with data than we often 

conventionally do.” 

Another oft-heard argument is that science 

requires creativity, and that — at least so far — 

we have no idea how to program that into a 

machine. (Simply trying everything, like 

Cronin’s robo-chemist, doesn’t seem especially 

creative.) “Coming up with a theory, with 

reasoning, I think demands creativity,” Polsterer 

said. “Every time you need creativity, you will 

need a human.” And where does creativity come 

from? Polsterer suspects it is related to boredom 

— something that, he says, a machine cannot 

experience. “To be creative, you have to dislike 

being bored. And I don’t think a computer will 

ever feel bored.” On the other hand, words like 

“creative” and “inspired” have often been used 

to describe programs like Deep Blue and 

AlphaGo. And the struggle to describe what 

goes on inside the “mind” of a machine is 

mirrored by the difficulty we have in probing 

our own thought processes. 

Schawinski recently left academia for the private 

sector; he now runs a startup called Modulos 

which employs a number of ETH scientists and, 

according to its website, works “in the eye of the 

storm of developments in AI and machine 

learning.”  Whatever obstacles may lie between 

current AI technology and full-fledged artificial 

minds, he and other experts feel that machines 

are poised to do more and more of the work of 

human scientists. Whether there is a limit 

remains to be seen. 

“Will it be possible, in the foreseeable future, to 

build a machine that can discover physics or 

mathematics that the brightest humans alive are 

not able to do on their own, using biological 

hardware?” Schawinski wonders. “Will the 

future of science eventually necessarily be 

driven by machines that operate on a level that 

we can never reach? I don’t know. It’s a good 

question.” 


